

ПРОТОН-ЭЛЕКТРОТЕКС

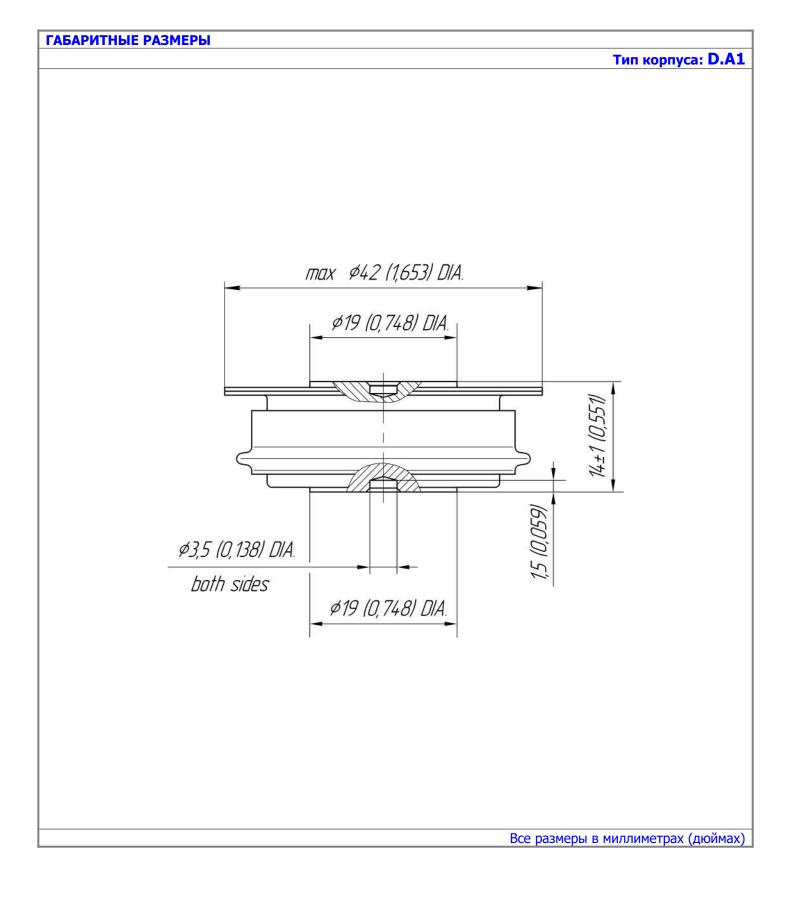
Высокая стойкость к электротермоциклированию Низкие статические и динамические потери Разработан для промышленного применения

Лавинный Диод Тип ДЛ123-320-18

Средний прямой ток					I _{FAV}		320	320 A			
Повторяющееся импульсное обратное напряжение				U _{RRM}		10001800 B					
U _{RRM} , B	1000	1100	1200	1	300	14	00	1500	1600	1800	
Класс по напряжению	10 11 12				13	14 15 16 18			18		
T _j , °C	−60+150										

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ ПАРАМЕТРОВ

Обозначение и наименование параметра			Значение		Условия измерения	
Параме	тры в проводящем состоянии					
$I_{\sf FAV}$	Максимально допустимый средний прямой ток	A	320 424	T_c =116 °C; двухстороннее охлажден T_c =100 °C; двухстороннее охлажден 180 эл. град. синус; 50 Гц		
I_{FRMS}	Действующий прямой ток	А	502		; двухстороннее охлаждение; ад. синус; 50 Гц	
т	Ударный ток	кА	5.5 6.5	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; t_p =10 мс; единичный импульс; U_R =0 В	
${ m I}_{\sf FSM}$	ударный ток	KA	6.0 $T_j = T_{j \text{ max}}$ 180 эл. град. синус; $t_p = 8.3$ мс; единичный импульс; $U_R = 0$ В		t _p =8.3 мс; единичный	
I²t	200000000000000000000000000000000000000	A ² C·10 ³	150 210	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. Синус; t_p =10 мс; единичный импульс; U_R =0 В	
	Защитный показатель		140 200	$T_j=T_{j \text{ max}}$ $T_j=25 \text{ °C}$	180 эл. град. синус; t _p =8.3 мс; единичный импульс; U _R =0 B	
Блокир	ующие параметры	'				
U_{RRM}	Повторяющееся импульсное обратное напряжение	В	10001800	T _{j min} < T _j <t<sub>j max; 180 эл. град. синус; 50 Гц</t<sub>		
U _(BR)	Пробивное напряжение	В	12502250	T _j =25 °C;	I _{br} =100 мА; t _p = 10 мс; 5 Гц	
U_R	Постоянное обратное напряжение	В	0.6 [·] U _{RRM}	$T_j = T_{j \text{ max}}$		
P _{RSM}	Ударная обратная рассеиваемая мощность	кВт	16	T_{j} = $T_{j max}$; t_{p} = 100 мкс; 180 эл. град. синусоидальный ток; единичный импульс		
Теплов	ые параметры					
T _{stg}	Температура хранения	°C	-60+50			
T _j	Температура р-п перехода	°C	-60+150			
Механи	ческие параметры					
F	Монтажное усилие	кН	5.07.0			
a	Ускорение	M/C ²	50	В зажатом	гостоянии	


ХАРАКТЕРИСТИКИ

Обозначение и наименование характеристики			Значение	Усло	овия измерения	
Характе	ристики в проводящем состоянии			-		
U _{FM}	Импульсное прямое напряжение, макс	В	1.60	T _j =25 °C; I _{FM} =1	1005 A	
U _{F(TO)}	Пороговое напряжение, макс	В	0.949	$T_j = T_{j \text{ max}};$		
r _⊤	Динамическое сопротивление, макс	мОм	0.706	0.5 π I _{FAV} < I _T	$<$ 1.5 π I_{FAV}	
Блокир	ующие характеристики			-		
${ m I}_{\sf RRM}$	Повторяющийся импульсный обратный ток, макс	мА	35	$T_j=T_{j \text{ max}};$ $U_R=U_{RRM}$		
Динами	ческие характеристики					
Q_r	Заряд восстановления, макс	мкКл	1080			
t _{rr}	Время обратного восстановления, макс	мкс	20	$T_j=T_{j max}$; $I_{FM}=I_{FAV}$; $di_R/dt=-10 A/mKC$;		
\mathbf{I}_{rr}	Обратный ток восстановления, макс	A	108	U _R =100 B;		
Теплові	ые характеристики					
R_{thjc}			0.070		Двухстороннее охлаждение	
$R_{\text{thjc-A}}$	Тепловое сопротивление p-n переход-корпус, макс	°С/Вт	0.154	Постоянный ток	Охлаждение со стороны анода	
R _{thjc-K}			0.126		Охлаждение со стороны катода	
R _{thck}	Тепловое сопротивление корпус- охладитель, макс	°С/Вт	0.010	Постоянный ток		
Механи	ческие характеристики					
m	Масса, макс	Г	60			
Ds	Длина пути тока утечки по поверхности	мм (дюйм)	11.74 (0.462)			
D _a	Длина пути тока утечки по воздуху	мм (дюйм)	11.60 (0.457)			

МАРКИРОВКА

ДЛ	123	320	18	УХЛ2
1	2	3	4	5

- 1. ДЛ Лавинный диод
- 2. Конструктивное исполнение
- 3. Средний прямой ток, А
- 4. Класс по напряжению
- 5. Климатическое исполнение по ГОСТ 15150: УХЛ2, Т2

Содержащаяся здесь информация является конфиденциальной и находится под защитой авторских прав. В интересах улучшения качества продукции, АО «Протон-Электротекс» оставляет за собой право изменять информационные листы без уведомления.

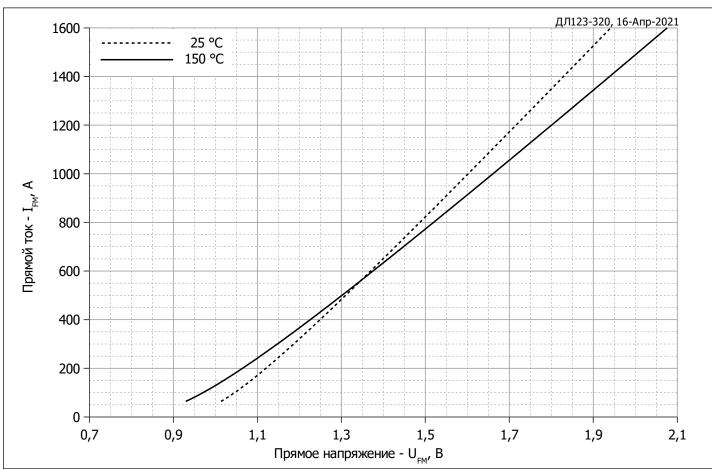


Рис. 1 – Предельная вольт-амперная характеристика

Аналитическая функция предельной вольт — амперной характеристики:

$$U_F = A + B \cdot i_F + C \cdot \ln(i_F + 1) + D \cdot \sqrt{i_F}$$

	Коэффициенты для графика						
	$T_j = 25^{\circ}C$ $T_j = T_{j \text{ max}}$						
Α	0.85699474	0.73590240					
В	0.00054225	0.00064253					
С	0.02904189	0.03337101					
D	0.00006702	0.00164717					

Модель предельной вольт – амперной характеристики (см. Рис. 1).

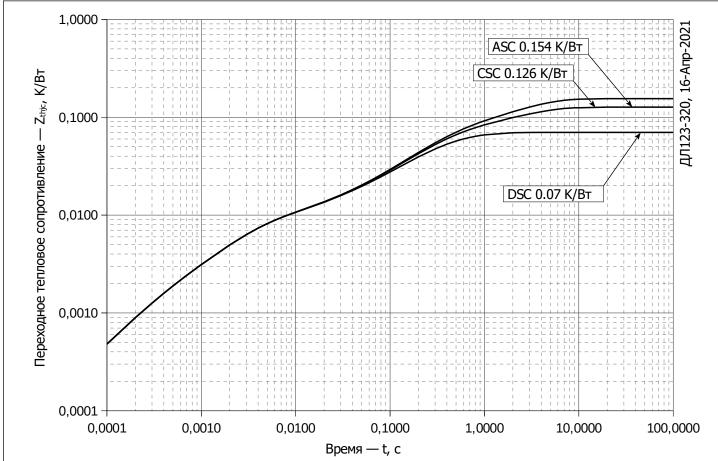


Рис. 2 — Зависимость переходного теплового сопротивления Z_{thjc} от времени t

Аналитическая зависимость переходного теплового сопротивления переход — корпус:

$$Z_{thjc} = \sum_{i=1}^{n} R_i \left(1 - e^{-\frac{t}{\tau_i}} \right)$$

Где i = 1 до n, n — число суммирующихся элементов.

t = продолжительность импульсного нагрева в секундах.

 \mathbf{Z}_{thjc} = Тепловое сопротивление за время t.

 \mathbf{R}_{i} , $\mathbf{\tau}_{i}$ = расчетные коэффициенты, приведенные в таблице.

Постоянный ток, двустороннее охлаждение

i	1	2	3	4	5	6
R _i , K/W	0.03233	0.02226	0.005231	0.002739	0.006738	0.0006988
τ _i , S	0.2392	0.533	0.1478	0.01499	0.002749	0.0002969

Постоянный ток, охлаждение со стороны анода

i	1	2	3	4	5	6
R _i , K/W	0.08459	0.02327	0.002598	0.006598	0.0006736	0.03694
τ _i , S	2.653	0.5669	0.01311	0.00269	0.0002871	0.2416

Постоянный ток, охлаждение со стороны катода

i	1	2	3	4	5	6
R _i , K/W	0.05654	0.03706	0.002638	0.006637	0.0006786	0.02303
τ _i , S	2.653	0.2338	0.01361	0.002704	0.000289	0.5476

Модель переходного теплового сопротивления переход - корпус (см. Рис. 2)

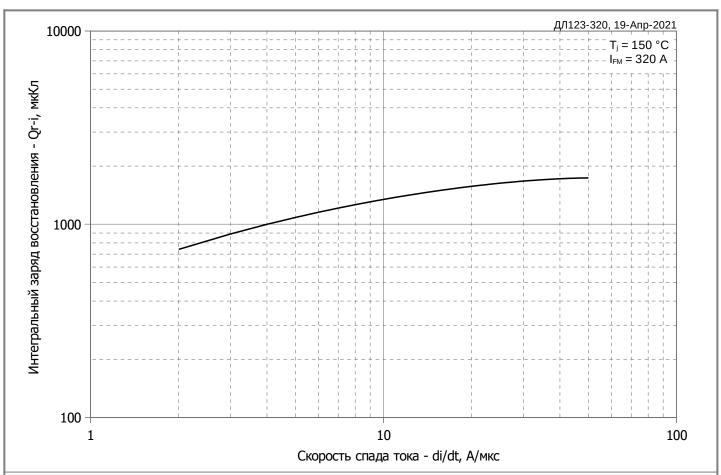


Рис. 3 — Зависимость максимального заряда восстановления Q_{r-i} (интегральный) от скорости спада прямого тока di_R/dt

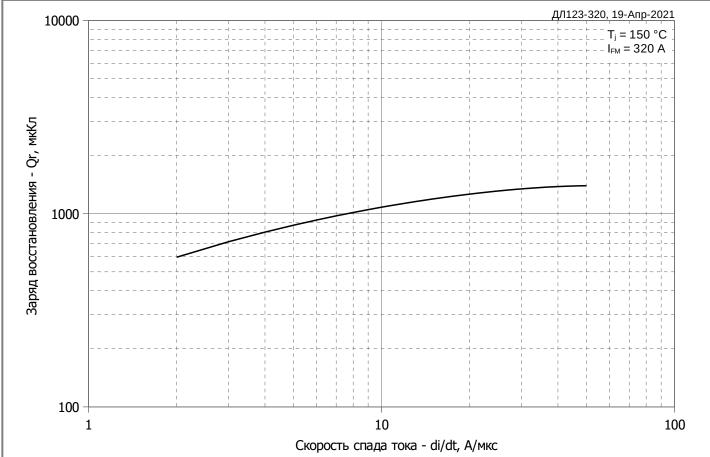


Рис. 4 — Зависимость максимального заряда восстановления Q_r от скорости спада прямого тока di_R/dt (по ГОСТ 24461, хорда 25%)

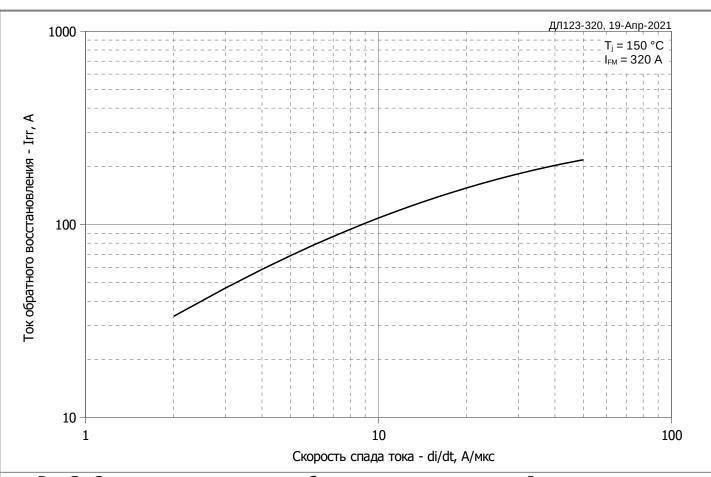


Рис. 5 — Зависимость максимального обратного тока восстановления \mathbf{I}_{rr} от скорости спада прямого тока di_{R}/dt

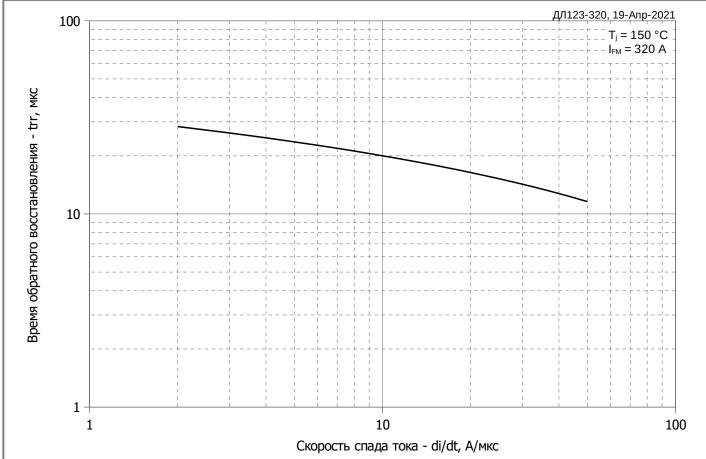


Рис. 6 — Зависимость максимального времени обратного восстановления $t_{\rm rr}$ от скорости спада прямого тока $di_{\rm R}/dt$ (по ГОСТ 24461, хорда 25%)

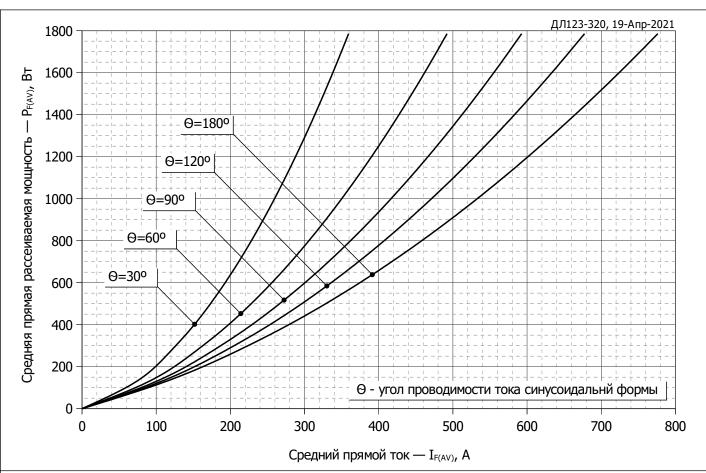


Рис. 7 - Зависимость потерь мощности P_{FAV} от среднего прямого тока I_{FAV} синусоидальной формы при различных углах проводимости (f=50 Гц, двухстороннее охлаждение)

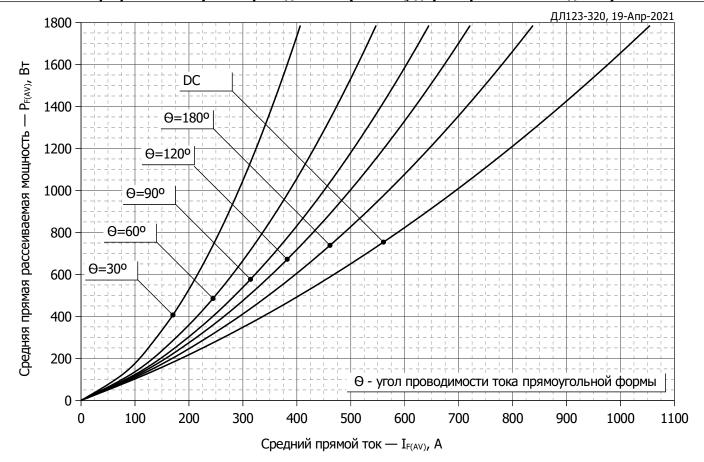


Рис. 8— Зависимость потерь мощности P_{FAV} от среднего прямого тока I_{FAV} прямоугольной формы при различных углах проводимости (f=50 Гц, двухстороннее охлаждение)

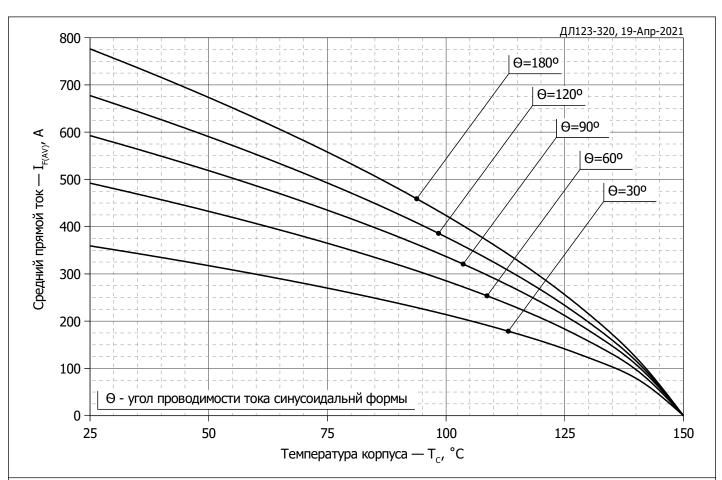


Рис. 9 — Зависимость среднего прямого тока I_{FAV} от температуры корпуса T_{C} для синусоидальной формы тока при различных углах проводимости (f=50 Гц, двухстороннее охлаждение)

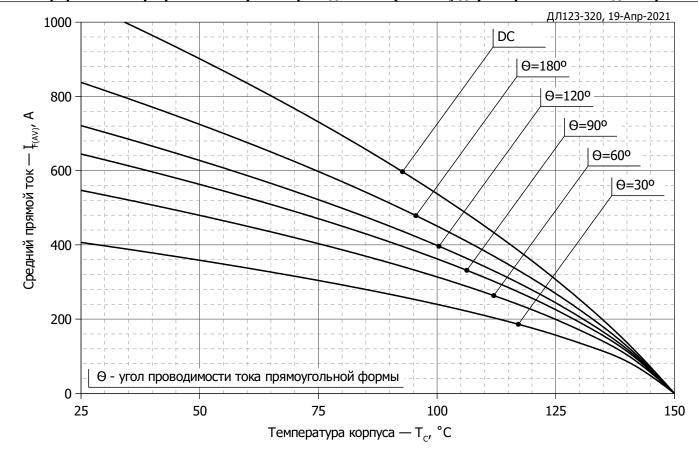


Рис. 10 - Зависимость среднего прямого тока I_{FAV} от температуры корпуса T_c для прямоугольной формы тока при различных углах проводимости (f=50 Γ ц, двухстороннее охлаждение)

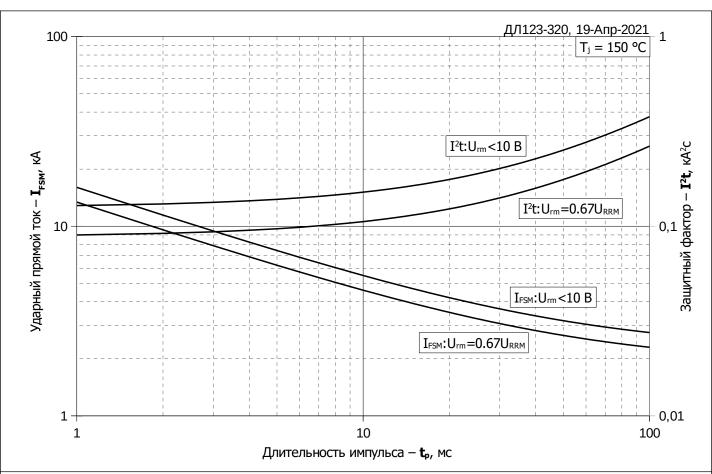


Рис. 11 — Зависимость максимальной амплитуды ударного прямого тока I_{FSM} и защитного фактора I^2t от длительности импульса t_{p}

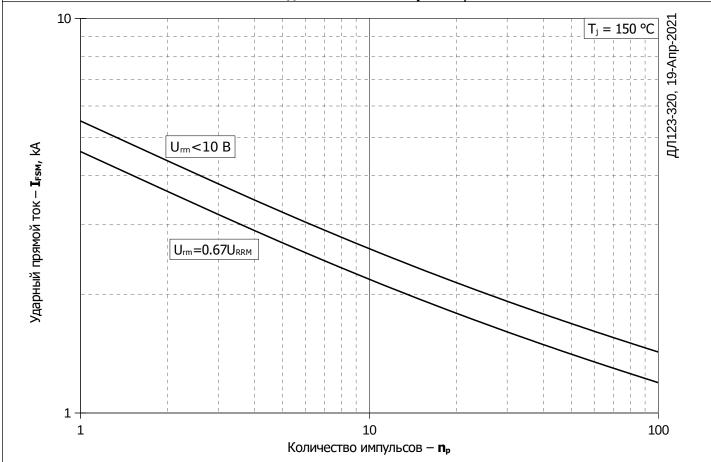


Рис. 12 — Зависимость максимальной амплитуды ударного прямого тока I_{FSM} от количества импульсов n_{p}