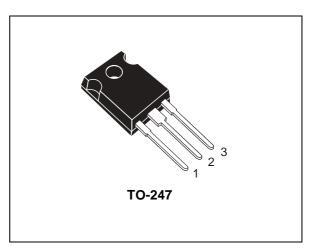


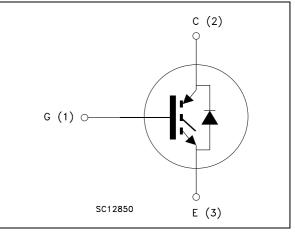
STGW45HF60WD

45 A, 600 V ultra fast IGBT

Features


- Improved E_{off} at elevated temperature
- Low C_{RES} / C_{IES} ratio (no cross-conduction susceptibility)
- Ultra fast soft recovery antiparallel diode

Applications


- Welding
- High frequency converters
- Power factor correction

Description

The "HF" family is based on a new advanced planar technology concept to yield an IGBT with more stable switching performance (E_{off}) versus temperature, as well as lower conduction losses. The "W" series is a subset of products tailored to high switching frequency operation (over 100 kHz).

Figure 1. Internal schematic diagram

Table 1.Device summary (1)

Order code	Marking	Package	Packaging
STGW45HF60WD	GW45HF60WDA	TO-247	Tube
	GW45HF60WDB		
	GW45HF60WDC		

1. Collector-emitter saturation voltage is classified in group A, B and C, see *Table 5: VCE(sat) classification*. STMicroelectronics reserves the right to ship from any group according to production availability.

1 Electrical ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage ($V_{GE} = 0$)	600	V
I _C ⁽¹⁾	Continuous collector current at $T_C = 25 \text{ °C}$	70	А
I _C ⁽¹⁾	Continuous collector current at $T_C = 100 \text{ °C}$	45	А
I _{CP} ⁽²⁾	Pulsed collector current	150	А
I _{CL} ⁽³⁾	Turn-off latching current	80	А
V _{GE}	Gate-emitter voltage	± 20	V
١ _F	Diode RMS forward current at $T_C = 25 \text{ °C}$	30	А
I _{FSM}	Surge not repetitive forward current t _p = 10 ms sinusoidal	120	А
P _{TOT}	Total dissipation at $T_C = 25 \text{ °C}$	250	W
T _{stg}	Storage temperature	– 55 to 150	°C
Тj	Operating junction temperature		

1. Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

2. Pulse width limited by maximum junction temperature and turn-off within RBSOA

3. V_{CLAMP} = 80% (V_{CES}), V_{GE} = 15 V, R_G = 10 $\Omega,\,T_J$ = 150 °C

Table 3.Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case IGBT	0.5	°C/W
	Thermal resistance junction-case diode	1.5	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	50	°C/W

