IGBT - Field Stop

600 V, 40 A

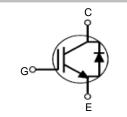
FGH40N60SMD

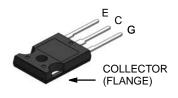
Description

Using novel field stop IGBT technology, ON Semiconductor's new series of field stop 2nd generation IGBTs offer the optimum performance for solar inverter, UPS, welder, telecom, ESS and PFC applications where low conduction and switching losses are essential.

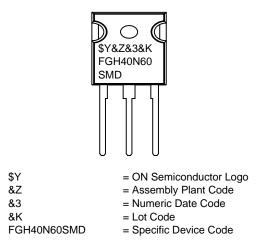
Features

- Maximum Junction Temperature : $T_J = 175^{\circ}C$
- Positive Temperature Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: $V_{CE(sat)} = 1.9 \text{ V} (Typ) @ I_C = 40 \text{ A}$
- High Input Impedance
- Fast Switching: $E_{OFF} = 6.5 \mu J/A$
- Tighten Parameter Distribution
- This Device is Pb–Free, Halogen Free/BFR Free and is RoHS Compliant


Applications


• Solar Inverter, Welder, UPS, PFC, Telecom, ESS

ON Semiconductor®


www.onsemi.com

TO-247-3LD CASE 340CK

MARKING DIAGRAMS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

FGH40N60SMD

ABSOLUTE MAXIMUM RATINGS

Parameter		Symbol	Ratings	Unit
Collector to Emitter Voltage		V _{CES}	600	V
Gate to Emitter Voltage	V _{GES}	±20	V	
Transient Gate to Emitter Voltage	7	±30	V	
Collector Current	T _C = 25°C	Ι _C	80	А
Collector Current	$T_{C} = 100^{\circ}C$	7	40	А
Pulsed Collector Current (Note 1)	T _C = 25°C	I _{CM}	120	А
Diode Forward Current	T _C = 25°C	١ _F	40	А
Diode Forward Current	$T_{C} = 100^{\circ}C$	7	20	А
Pulsed Diode Maximum Forward Current (Note 1)		I _{FM}	120	А
Maximum Power Dissipation	T _C = 25°C	PD	349	W
Maximum Power Dissipation	$T_{C} = 100^{\circ}C$	1	174	W
Operating Junction Temperature		TJ	-55 to +175	°C
Storage Temperature Range		T _{stg}	-55 to +175	°C
Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Seconds		TL	300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.Repetitive rating: Pulse width limited by max. junction temperature.

THERMAL CHARACTERISTICS

Characteristic		Value	Unit	
Thermal Resistance, Junction to Case (IGBT)	$R_{\theta JC}$	0.43	°C/W	
Thermal Resistance, Junction to Case (Diode)		1.5	°C/W	
Thermal Resistance, Junction to Ambient	R_{\thetaJA}	40	°C/W	

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FGH40N60SMD	FGH40N60SMD	TO-247-3LD	Tube	N/A	N/A	30

ELECTRICAL CHARACTERISTICS OF THE IGBT ($T_C = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS		-		-		-
Collector to Emitter Breakdown Voltage	BV _{CES}	$V_{GE} = 0 \text{ V}, \text{ I}_{C} = 250 \mu\text{A}$	600	-	-	V
Temperature Coefficient of Breakdown Voltage	ΔBV _{CES} / ΔTJ	$V_{GE} = 0 \text{ V}, \text{ I}_{C} = 250 \mu\text{A}$	-	0.6	-	V/°C
Collector Cut-Off Current	I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0 V$	-	-	250	μA
G-E Leakage Current	I _{GES}	$V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	±400	nA
ON CHARACTERISTICS						
G-E Threshold Voltage	V _{GE(th)}	$I_C = 250 \ \mu\text{A}, \ V_{CE} = V_{GE}$	3.5	4.5	6.0	V
Collector to Emitter Saturation Voltage	V _{CE(sat)}	I _C = 40 A, V _{GE} = 15 V	-	1.9	2.5	V
		$I_{C} = 40 \text{ A}, \text{ V}_{GE} = 15 \text{ V}, \text{ T}_{C} = 175^{\circ}\text{C}$	-	2.1	-	V